

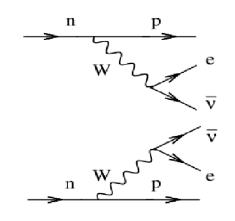
nEXO Experiment and Its Photodetector R&D

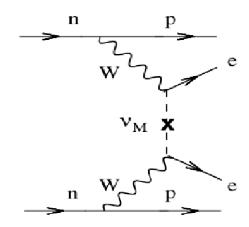
Liang Yang

University of California, San Diego

Nov 12, 2019

DUNE Module of Opportunity Workshop Brookhaven National Lab


Double Beta Decay



Maria Goeppert Mayer

Ettore Majorana

Observation of 0νββ:

- Majorana neutrino
- Neutrino mass scale
- Lepton number violation

Two neutrino double beta decay

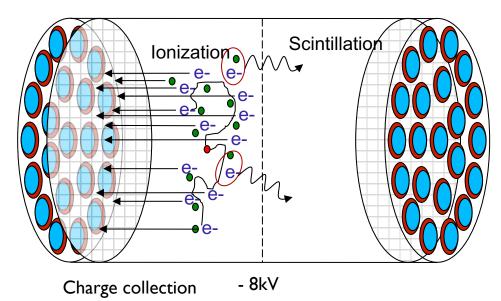
$$^{136}_{54}Xe \rightarrow ^{136}_{56}Ba^{++} + 2e^{-} + 2v_{e}$$

1935 Maria Goeppert Mayer first proposed the idea of two neutrino double beta decay

1987 first direct observation in ⁸²Se by M. Moe

Neutrinoless double beta decay

$$^{136}_{54}Xe \rightarrow ^{136}_{56}Ba^{++} + 2e^{-} + 2v_{e}$$

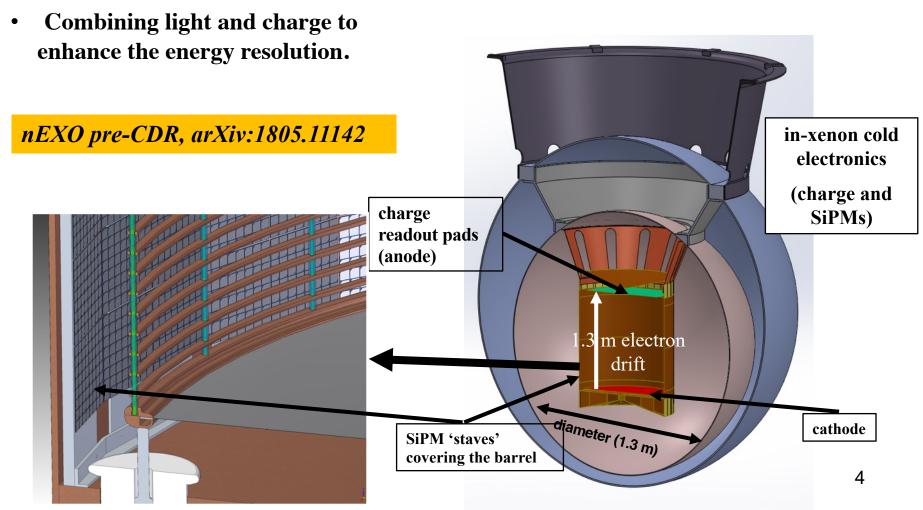

1937 Ettore Majorana proposed the theory of Majorana fermions

1939 Wendell Furry proposed neutrino less double beta decay

The search continues....

Use Liquid Xenon Time Projection Chambers (TPC) to Search for 0νββ Decay

- Xe is used both as the source and detection medium.
- Simultaneous collection of both ionization and scintillation signals.
- Full 3-D reconstruction of all energy depositions in LXe.
- Monolithic detector structure, excellent background rejection capabilities.


Example of TPC schematics (EXO-200)

EXO-200 is a LXe detector with ~110 kg active volume, operated from 2011-2018. It has demonstrated key performance parameters for $0\nu\beta\beta$ search, and has set a lower limit on the $0\nu\beta\beta$ half-life at $3.5x10^{25}$ yrs with its entire dataset.

nEXO is a proposed ~ 5 tonne detector. Its design will be optimized to take full advantage of the LXe TPC concept and can reach $0\nu\beta\beta$ half-life sensitivity of ~ 10^{28} yrs.

Pre-Conceptual Design of nEXO

- 5 tones of single phase LXe TPC.
- Ionization charge collected by anode.
- 178nm lights detected by ~4 m² SiPM array behind field shaping rings.

Choice of Photosensor for nEXO

EXO-200 used 500 Bare APDs.

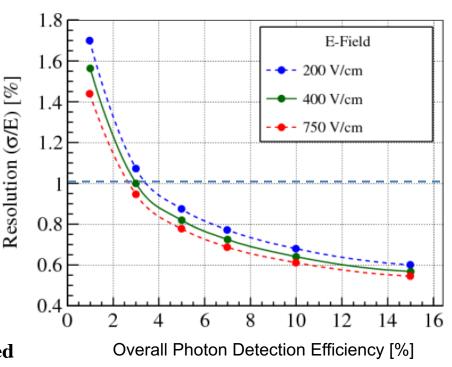
- ~ 1500 V bias
- Low gain (G~200)
- Large (dG/G)/dT ~ 5%/K
- Large (dG/G)/(dV/V) ~ 15
- VUV photon detection efficiency per area, 25%*
- Low leakage current at LXe temperature

Noise goes up with increased capacitance, while signal size remains constant, difficult to reach $\sigma/E \sim 1\%$.

VUV sensitive SiPM for nEXO

- 30 80 V bias
- High Gain (10⁵ 10⁶)
- Lower (dG/G)/dT ~ 0.6%/K
- Lower (dG/G)/(dV/V) ~ 0.3
- VUV photon detection efficiency per area, up to 15%
- Dark noise and correlated noise

individual photon counting with high gain and low noise. Resolution limited by dark counts and correlated avalanches 5

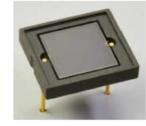

^{*} Accounting for inactive area

Photon Detection Efficiency Requirements

To achieve 1% energy resolution, an overall 3% photon detection efficiency is required, consisting of two parts:

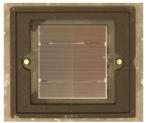
- Photon detection efficiency (PDE) of SiPM
 - Determined by filling factor, transmittance, quantum efficiency and trigger efficiency.
 - Can be measured by a standalone setup.
- Photon transport efficiency (PTE)
 - Detector geometry
 - Reflective electrodes in TPC
 - Reflectivity of SiPM

For VUV photons, more than 50% will be reflected on SiPM surface, assuming Si-SiO₂ interface.


SiPM R&D for nEXO

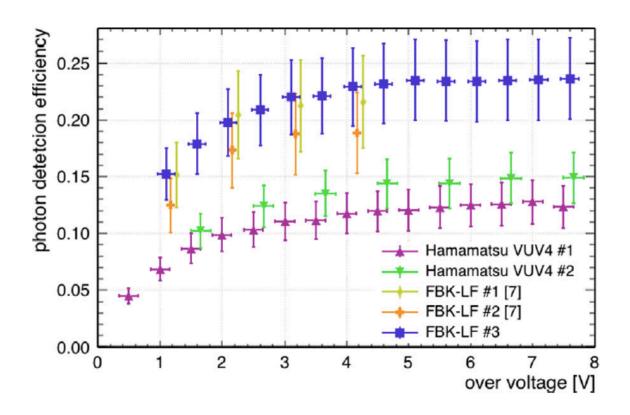
- SiPM PDE (at VUV region) and nuisance parameters (in cold)
 - o Stanford U.
 - o TRIUMF
 - o Erlangen
 - o BNL
 - o IHEP
 - o U. Mass.
- Reflectivity of SiPM
 - \circ In vacuum or N_2
 - IHEP
 - TRIUMF
 - In liquid xenon
 - U. Alabama
 - Erlangen
 - UMASS

HPK VUV4 (50 & 75 μm pixel)



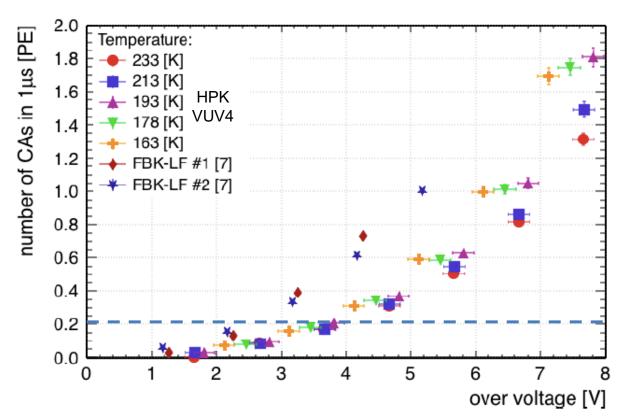
6x6 mm² 50 μm/pixel 14400 pixels F=0.6

6x6 mm²
75 μm/pixel
6400 pixels
F=0.7


FBK VUV HD-LF

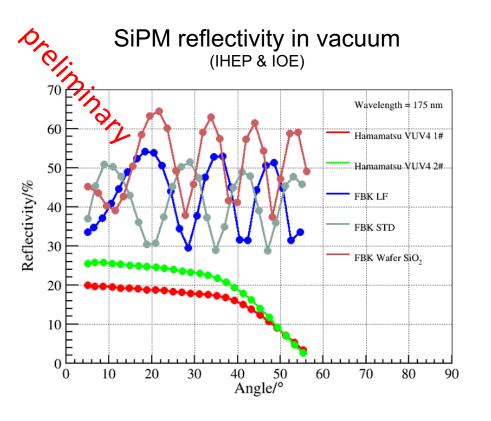
~4x(3x3)mm² 30 µm/pixel 25468 pixels F~0.73

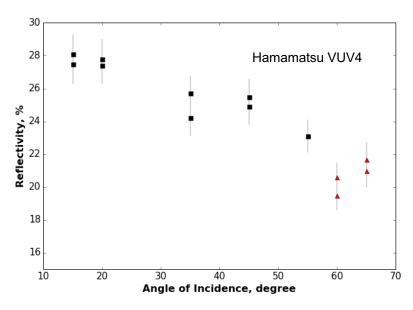
- **□** Tested SiPMs
 - > FBK
 - NUV, VUV-LF-HD, VUV-STD-HD
 - **Hamamatsu**
 - **VUV3**, **VUV4**


PDE Measurements (TRIUMF, Stanford)

- Center of wavelength: 180 nm
- FBK-VUV-LF shows higher PDE, comparing with VUV4 from Hamamatsu.
- The uncertainty is dominated by quantum efficiency of the reference PMT

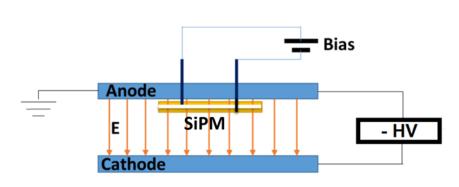
A, Jamil, et al. IEEE Trans. Nucl. Sci. 65, 2823 (2018)

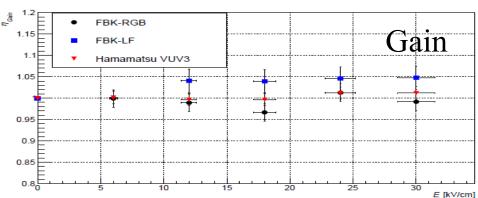

Correlated Avalanches (TRIUMF, Stanford)

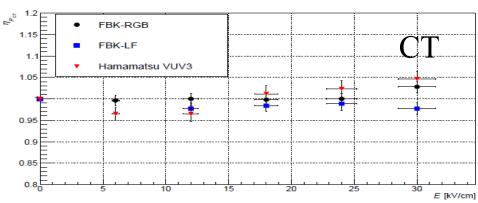

- To achieve 1% energy resolution, the SiPM correlated avalanches (CA) need to be below 20%.
- VUV4 from Hamamatsu has low CA than FBK-VUV-LF, thus can be operated at a higher over-voltage.
- Dark noise rates for both type devices are comfortably below nEXO requirement of < 50Hz/mm².

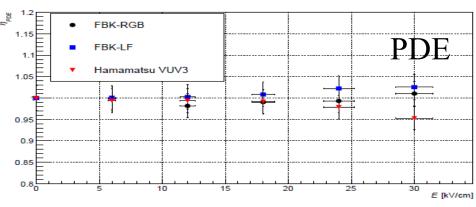
 A, Jamil, et al. IEEE Trans.Nucl.Sci. 65, 2823 (2018)

Reflectivity Measurements


SiPM reflectivity in liquid xenon (U. Alabama)

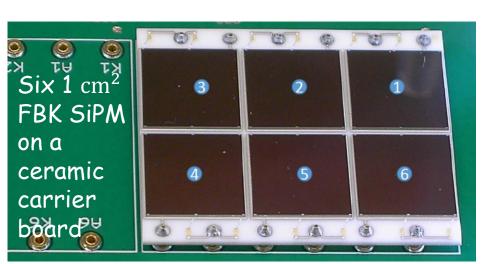

- Oscillation due to SiO₂ layer, negligible in LXe.
- Lower specular reflectivity for VUV4, comparing to FBK SiPMs.
- Similar diffused reflections between VUV4 and FBK SiPMs.

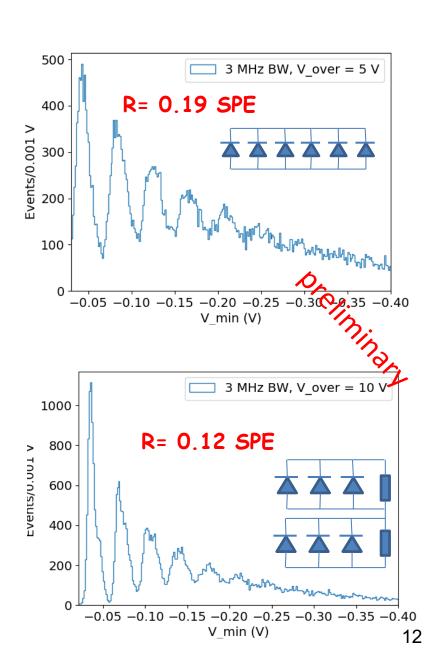

- ²⁵²Cf fission sources used to produce scintillation light in LXe.
- Specular reflectivity decreases with angle of incidence.


SiPM Performance under E-field (IHEP)

- In nEXO, SiPMs will be exposed to external E-fields up to ~20 kV/cm.
- SiPM performance in various E-fields at cryogenic temperatures (~150K) have been tested.
- The tested SiPMs show good stability under the influence of different electric field strengths.
- Need to test in LXe and understand if surface charge buildup is an issue.

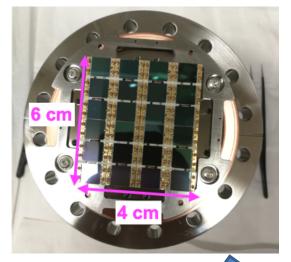
T. Tolba, et.al., JINST 13, T09006, 2018.

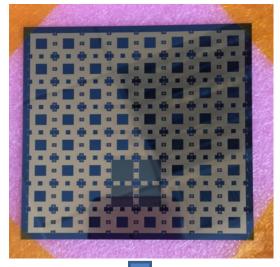

Large Area SiPM Readout


Requirements

- Single photoelectron detection capability.
- Low electronics noise (< 0.1 p.e.)

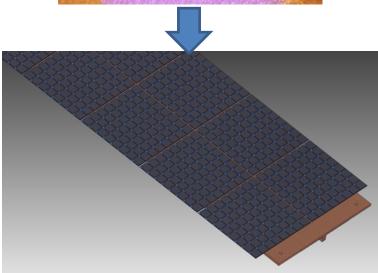
Analog readout prototype testing


- Up to 6 cm² SiPMs can be read out with a single front end channel in either parallel or series configuration.
- 2.5 mW/ch front end power meets the power requirement.
- Provides valuable information for the ASIC design.



Towards Integrated SiPM Tiles

Prototype SiPM Tile (Stanford)



Prototype silicon interposer (IME)

ASIC (ZENON) for SiPM readout under design (BNL)

- · System on Chip
- 16 channel
- Peak detection
- Analog to digital conversion
- On-chip LDOs

Conceptual design of the photo detector system underway

BNL nEXO group is playing a leading role in SiPM testing, Cryogenic ASIC design, and SiPM tile design/assembly.

Ideas and Applications for MoOD

Direct detection of scintillation light with SiPM

- Improve light detection efficiency if can tile the detector with SiPMs, cost of SiPM continuously to come down
- > No need for WLS, likely to improve chemical purity
- > SiPM directly sensitive to LAr scintillation light is still under development

SiPM readout with custom cryogenic ASIC

- Reduce the cost of SiPM readout and cabling
- Reduce the material for the photon detector system
- engineering cost can be lowered following the development for nEXO

Xe doping of LAr

- Shifting the scintillation light to improve detection efficiency
- SiPM sensitive to Xe scintillation can be used

Summary and Outlook

- VUV sensitive SiPM is the photodetector of choice for the nEXO experiment.
- R&D efforts in the collaboration show that some devices can already meet the nEXO requirements on PDE and correlated noise.
- Reflectivity of the SiPM in vacuum and LXe is actively being investigated.
- R&D on SiPM performance in high electric field and large area readout are underway.
- nEXO is moving quickly towards a conceptual design for the photodetector system.
- Possible applications for DUNE, though all require additional R&D.

University of Alabama, Tuscaloosa AL, USA
M Hughes, P Nakarmi, O Nusair, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan
University of Bern, Switzerland — J-L Vuilleumier
University of British Columbia, Vancouver BC, Canada — G Gallina, R Krücken, Y Lan
Brookhaven National Laboratory, Upton NY, USA

M Chiu, G Giacomini, V Radeka E Raguzin, S Rescia, T Tsang University of California, Irvine, Irvine CA, USA — M Moe

California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada

I Badhrees, B Chana, D Goeldi, R Gornea, T Koffas, C Vivo-Vilches

Colorado School of Mines, Golden CO, USA — K Leach, C Natzke

Colorado State University, Fort Collins CO, USA

A Craycraft, D Fairbank, W Fairbank, A Iverson, J Todd, T Wager

Drexel University, Philadelphia PA, USA — MJ Dolinski, P Gautam, EV Hansen, M Richman, P Weigel Duke University, Durham NC, USA — PS Barbeau

Friedrich-Alexander-University Erlangen, Nuremberg, Germany G Anton, J Hößl, T Michel, S Schmidt, M Wagenpfeil, W G Wrede, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China

GF Cao, WR Cen, YY Ding, XS Jiang, P Lv, Z Ning, XL Sun, T Tolba, W Wei, LJ Wen, WH Wu, J Zhao ITEP Moscow, Russia — V Belov, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich

University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, J Echevers, S Li, L Yang Indiana University, Bloomington IN, USA — SJ Daugherty, LJ Kaufman, G Visser

Laurentian University, Sudbury ON, Canada — E Caden, B Cleveland, A Der Mesrobian-Kabakian, J Farine, C Licciardi, A Robinson, M Walent, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA

JP Brodsky, M Heffner, A House, S Sangiorgio, T Stiegler
University of Massachusetts, Amherst MA, USA
J Bolster, S Feyzbakhsh, KS Kumar, O Njoya, A Pocar, M Tarka, S Thibado
McGill University, Montreal QC, Canada

S Al Kharusi, T Brunner, D Chen, L Darroch, Y Ito, K Murray, T Nguyen, T Totev University of North Carolina, Wilmington, USA — T Daniels

Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, RJ Newby Pacific Northwest National Laboratory, Richland, WA, USA

IJ Arnquist, ML di Vacri, EW Hoppe, JL Orrell, GS Ortega, CT Overman, R Saldanha, R Tsang Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, A Fucarino, K Odgers, A Tidball

Université de Sherbrooke, QC, Canada — SA Charlebois, D Danovitch, H Dautet, R Fontaine,

F Nolet, S Parent, J-F Pratte, T Rossignol, N Roy, G St-Hilaire, J Sylvestre, F Vachon

SLAC National Accelerator Laboratory, Menlo Park CA, USA — R Conley, A Dragone, G Haller, J Hasi,

LJ Kaufman, C Kenney, B Mong, A Odian, M Oriunno, A Pena Perez, PC Rowson, J Segal, K Skarpaas VIII

University of South Dakota, Vermillion SD, USA — T Bhatta, A Larson, R MacLellan Stanford University, Stanford CA, USA

R DeVoe, G Gratta, M Jewell, S Kravitz, BG Lenardo, G Li, M Patel, M Weber Stony Brook University, SUNY, Stony Brook NY, USA — KS Kumar TRIUMF, Vancouver BC, Canada — J Dilling, G Gallina, R Krücken Y Lan, F Retière, M Ward Yale University, New Haven CT, USA — A Jamil, Z Li, DC Moore, Q Xia